§ 2.3. ЛАЗЕРНОЕ ВОЗБУЖДЕНИЕ ПРОДОЛЬНЫХ ВОЛН В ТЕПЛОПРОВОДЯЩЕМ ТВЕРДОМ ТЕЛЕ.

При описании возбуждения акустических волн тепловыми в твердых телах необходимо учитывать возбуждение сдвиговых волн наравне с продольными и энтропийными (также как и в случае вязких сред). Введением потенциалов

$$\frac{\partial \mathbf{u}}{\partial t} = \operatorname{grad} \boldsymbol{\varphi} + \operatorname{rot} \boldsymbol{\psi}, \qquad (2.41)$$

(где **u** – вектор смещения частиц) уравнение упругости можно привести к виду ^[8]:

$$\frac{1}{c_L^2} \frac{\partial^2 \varphi}{\partial t^2} - \Delta \varphi = -\frac{\beta}{c_p} \left(1 - \frac{4}{3} \frac{c_T^2}{c_L^2} \right) T_0 \frac{\partial s}{\partial t}, \qquad (2.42)$$

$$\frac{1}{c_T^2} \frac{\partial^2 \mathbf{\Psi}}{\partial t^2} - \Delta \mathbf{\Psi} = 0. \qquad (2.43)$$

Здесь *с*_{*T*},*с*_{*L*} - скорости сдвиговых и продольных волн. Уравнение теплопроводности (2.2) сохраняет свой вид.

Как видно из (2.42)-(2.43) в изотропном твердом теле тепловая волна возбуждает лишь продольную акустическую волну. Сдвиговая волна возбуждается при отражении продольной волны от границы среды Так же, как и в случае вязкой жидкости граничные условия соответствуют равенству смещений на границе раздела и соответствующих компонент тензора напряжений.

Вводя нормальную компоненту вихревой составляющей скорости (см. (1.40))

$$A = \frac{\partial \Psi_y}{\partial x} - \frac{\partial \Psi_x}{\partial y}$$

$$B = \frac{\partial \psi_x}{\partial x} - \frac{\partial \psi_y}{\partial y}$$

граничные условия могут быть записаны в виде ^[8]:

$$\left(\frac{\partial \varphi_1}{\partial z} + A_1\right)_{z=0} = \left(\frac{\partial \varphi_2}{\partial z} + A_2\right)_{z=0}, \qquad (2.44)$$

$$\left(\frac{\partial A_1}{\partial z} - \Delta_{\perp} \varphi_1\right)_{z=0} = \left(\frac{\partial A_2}{\partial z} - \Delta_{\perp} \varphi_2\right)_{z=0}, \qquad (2.45)$$

$$\left[\rho_1 c_{T1}^2 \left(\frac{\partial}{\partial z} \left(\Delta_\perp \varphi_1 \right) - \frac{1}{2 c_{T1}^2} \frac{\partial^2 A_1}{\partial t^2} + \Delta_\perp A_1 \right) \right]_{z=0} = \left[\dots \right]_{z=0} , \qquad (2.46)$$

$$\left[\rho_1 c_{T1}^2 \left(\frac{\partial A_1}{\partial z} + \frac{1}{2c_{T1}^2} \frac{\partial^2 \varphi_1}{\partial t^2} - \Delta_\perp \varphi_1 \right) \right]_{z=0} = \left[\dots \right]_{z=0} , \qquad (2.47)$$

$$\left(\frac{\partial B_1}{\partial z} - \Delta_\perp \psi_{z1} \right)_{z=0} = \left(\frac{\partial B_2}{\partial z} - \Delta_\perp \psi_{z2} \right)_{z=0} ,$$

$$\left[\frac{\partial}{\partial z} \left(\Delta_\perp \psi_{z1} \right) - \frac{1}{2c_{T1}^2} \frac{\partial^2 B_1}{\partial t^2} + \Delta_\perp B_1 \right]_{z=0} = \left[\dots \right]_{z=0} ,$$

$$\left[\frac{\partial B_1}{\partial z} + \frac{1}{2c_{T1}^2} \frac{\partial^2 \psi_{z1}}{\partial t^2} - \Delta_\perp \psi_{z1} \right]_{z=0} = \left[\dots \right]_{z=0} .$$

Таким образом, в граничных условиях оказываются связанными только следующие пары переменных: $\varphi_1 - A$ и $\psi_z - B$. Поскольку уравнения для ψ_z и B, также как и граничные условия, однородны, то очевидно

$$B_1 = \psi_{z1} = B_2 = \psi_{z2} = 0$$
.

Таким образом, для решения задачи о возбуждении звука в изотропном твердом теле необходимо решать уравнения (2.42), (2.43) с граничными условиями (2.44)-(2.47).

В одномерном случае, который будет рассматриваться в данном

параграфе, для спектра приращения энтропии можно воспользоваться выражениями (2.6), (2.7), полученными с учетом между средами. Как уже отмечалось выше, в теплообмена области $\omega >> \alpha^2 \chi_2$ диффузией тепла высокочастотной можно пренебречь. Однако в низкочастотной области $\omega << lpha^2 \chi_2$ область поглощения излучения термически тонкая и в глубине поглощающей (α*z*≥3) тепловое поле имеет среды универсальный вид, определяемый теплопроводностью:

$$T_{0} \tilde{s}_{2} = \frac{\tilde{T}_{0}(\omega)}{\rho_{2} \chi_{2}} \frac{\exp\left(-\sqrt{-i\omega/\chi_{2}}z\right)}{1+R_{T}} \frac{1}{\sqrt{-i\omega/\chi_{2}}}$$

Этот спектр соответствует решению задачи Даниловской о поверхностном нагреве ^[10]. Для сильно поглощающих (α≥10⁴ см⁻¹) и хорошо проводящих тепло ($\chi_2 \sim 1 \text{ см}^2/\text{с}$) сред условие $\omega << \alpha^2 \chi_2$ может выполняться практически во всем ультразвуковом диапазоне частот. Очевидно, что это в первую очередь металлы и кристаллические полупроводники.

В одномерном случае отсутствуют поперечные градиенты ($\Delta_{\perp} = 0$) и возбуждаются только продольные акустические волны: $A_1 = A_2 = 0$. Спектр потенциала $\tilde{\varphi}_{1,2}$ на глубинах $|z|\sqrt{\omega/\chi} >> 1$ может быть выражен аналогично (2.10), (2.11). Для этого воспользуемся преобразованием Лапласа по координате z

$$\hat{\varphi}_{2}\left(p\right) = \int_{0}^{\infty} e^{-pz} \,\widetilde{\varphi}_{2}\left(z\right) dz, \qquad (2.48)$$

$$\hat{\varphi}_1(q) = \int_{-\infty}^{0} e^{qz} \,\widetilde{\varphi}_1(z) \, dz \,. \tag{2.49}$$

Тогда уравнения (2.42) сведутся к

$$\left(\frac{\omega^2}{c_{L1}^2} + q^2\right)\hat{\varphi}_1 + \frac{d\,\hat{\varphi}_1}{d\,z}\Big|_0 - q\,\widetilde{\varphi}_1\Big|_0 = -i\,\omega\frac{\beta_1^*}{c_{p1}}\,T_0\,\hat{s}_1(q)\,, \qquad (2.50)$$

$$\left(\frac{\omega^2}{c_{L2}^2} + p^2\right)\hat{\varphi}_2 - \frac{d\hat{\varphi}_2}{dz}\Big|_0 - p\,\widetilde{\varphi}_2\Big|_0 = -i\,\omega\frac{\beta_2^*}{c_{p2}}\,T_0\,\hat{s}_2\left(p\right). \tag{2.51}$$

Здесь использовано обозначение $\beta^* = \beta \left(1 - 4 c_T^2 / 3 c_T^2 \right)$, где $\beta^* -$ "эффективный" коэффициент теплового расширения твердого тела. Для жидкостей они совпадают: $\beta^* = \beta$.

С учетом условий излучения для $\hat{\phi}_1$ и $\hat{\phi}_2$, граничных условий (2.44) и (2.47) ((2.45), (2.46) удовлетворяются автоматически), уравнения (2.50), (2.51) сведутся к следующим:

$$\frac{d\,\widetilde{\varphi}_{2}}{d\,z}\Big|_{0} - i\frac{\omega}{c_{L2}}\widetilde{\varphi}_{2}\Big|_{0} = i\omega\frac{\beta_{2}^{*}}{c_{p2}}T_{0}\,\hat{s}_{2}\left(-i\frac{\omega}{c_{L2}}\right),$$

$$\frac{d\,\widetilde{\varphi}_{1}}{d\,z}\Big|_{0} + i\frac{\omega}{c_{L1}}\widetilde{\varphi}_{1}\Big|_{0} = -i\omega\frac{\beta_{1}^{*}}{c_{p1}}T_{0}\,\hat{s}_{1}\left(-i\frac{\omega}{c_{L1}}\right),$$

$$\frac{d\,\widetilde{\varphi}_{1}}{d\,z}\Big|_{0} = \frac{d\,\widetilde{\varphi}_{2}}{d\,z}\Big|_{0},$$

$$\rho_{1}\,\widetilde{\varphi}_{1}\Big|_{0} = \rho_{2}\,\widetilde{\varphi}_{2}\Big|_{0}.$$

Отсюда нетрудно выразить значения переменных на границе и подставить их в (2.50), (2.51). Решения будут иметь вид:

$$\hat{\varphi}_{1}(\omega,q) = \left(\frac{\omega^{2}}{c_{L2}^{2}} + q^{2}\right)^{-1} \left\{ -i\omega \frac{\beta_{1}^{*}}{c_{p1}} T_{0} \hat{s}_{1}(q) + \left[(i\omega - N_{a} q c_{L1}) \frac{\beta_{1}^{*}}{c_{p1}} T_{0} \times \hat{s}_{1}(-i\frac{\omega}{c_{L1}}) - N_{a} (i\omega + q c_{L1}) \frac{\beta_{2}^{*}}{c_{p2}} T_{0} \hat{s}_{2}(-i\frac{\omega}{c_{L2}}) \right] (1 + N_{a})^{-1} \right\},$$

$$(2.52)$$

$$\hat{\varphi}_{2}(\omega,p) = \left(\frac{\omega^{2}}{c_{L2}^{2}} + p^{2}\right)^{-1} \left\{ -i\omega \frac{\beta_{2}^{*}}{c_{p2}} T_{0} \hat{s}_{2}(p) - \frac{1}{1+N_{a}} \left[(i\omega + pc_{L2}) \frac{\beta_{1}^{*}}{c_{p1}} T_{0} \times \hat{s}_{1} \left(-i \frac{\omega}{c_{L1}} \right) + (-i\omega N_{a} + pc_{L2}) \frac{\beta_{2}^{*}}{c_{p2}} T_{0} \hat{s}_{2} \left(-i \frac{\omega}{c_{L2}} \right) \right] \right\},$$

$$(2.53)$$

где $N_a = \rho_2 c_{L2} / \rho_1 c_{L1}$. Выражения (2.52), (2.53) дают решения, применимые также в случае сильного влияния теплопроводности и учитывающие тепловое расширение обеих сред. Выражения для \hat{s}_1, \hat{s}_2 могут быть взяты из (2.6), (2.7).

Вне области тепловыделения, локализованной вблизи границы раздела z=0, существуют чисто бегущие акустические волны и колебательные скорости являются функциями только одной переменной - либо $\tau_{-} = t + z / c_{L1}(v_{1})$, либо $\tau_{+} = t - z / c_{L2}(v_{2})$. Их спектр, также как и в случае нетеплопроводящих сред, может быть записан в виде (2.20). В дальнейшем ограничимся случаем однородно поглощающей излучение среды $\alpha = const$. Тогда передаточные функции K_{1}, K_{2} можно записать в виде ^[8]:

$$K_{1} = \frac{\beta_{2}^{*}}{\rho_{2} c_{p2}} \frac{N_{a}}{N_{a}+1} \left(1+i\frac{\omega}{\omega_{T}}\right)^{-1} \left[\frac{i\omega/\omega_{T}}{1-i\omega/\omega_{a}} + \frac{1+b}{1+R_{T}} + \left(-i\frac{\omega}{\omega_{T}}\right)^{1/2} \frac{R_{T}-b}{1+R_{T}}\right], \quad (2.54)$$

$$K_{2} = \frac{\beta_{2}^{*}}{\rho_{2} c_{p2}} \left(\left(N_{a}+1\right)\left(1+i\frac{\omega}{\omega_{T}}\right)\right)^{-1} \times \left[i\frac{\omega}{\omega_{T}}\frac{1-iN_{a}\omega/\omega_{a}}{1+\left(\omega/\omega_{a}\right)^{2}} + \frac{1+b}{1+R_{T}} + \left(-i\frac{\omega}{\omega_{T}}\right)^{1/2}\frac{R_{T}-b+N_{a}m_{\chi}}{1+R_{T}}\right]. \quad (2.55)$$

Здесь использованы обозначения

$$\omega_T = \alpha^2 \chi_2 , \qquad \omega_a = \alpha c_{L2} ,$$
$$m_{\chi} = \omega_T / \omega_a = \alpha \chi_2 / c_{L2} , \qquad b = \beta_1^* \sqrt{\chi_1} / \beta_2^* \sqrt{\chi_2} .$$

Величина *b* характеризует относительный вклад теплового расширения прозрачной среды в возбуждаемый сигнал.

В задаче о возбуждении звука вынужденной тепловой волной возникают три характерные частоты

$$\omega_T$$
, ω_a , ω_χ .

Их физический смысл обсуждался выше. Здесь мы отметим лишь то, что отношение этих частот могут быть охарактеризованы единственным безразмерным параметром *m*_γ, поскольку

$$\omega_T / \omega_a = \omega_a / \omega_{\chi} = m_{\chi} = \alpha \chi_2 / c_{L2} .$$

Этот параметр определяется характеристиками среды "2" и, как видно из таблицы 2.1, он может быть сравним с единицей только в случае сильного поглощения ($\alpha > 10^4 \div 10^5$ см⁻¹). Это возможно для металлов и полупроводников (в области межзонного поглощения света).

Таким образом, при $m_{\chi} << 1$ характерные частоты сильно разнесены и области влияния теплопроводности ($\omega < \omega_T$) и эффективного возбуждения звука тепловой волной ($\omega \sim \omega_a$) разделены В случае $m_{\chi} \leq 1$ теплопроводность сказывается на возбуждении звука во всем диапазоне эффективно возбуждаемых частот ($\omega_{\chi} \geq \omega_a \geq \omega_T$).

Как нетрудно видеть из (2.54), (2.55) передаточные функции при импедансной границе являются взвещенной суммой передаточных функций при закрепленной $\left(N_a=0\right)$ и свободной $\left(N_a=\infty\right)$ границах:

$$K = \frac{K(N_a = 0) + N_a K(N_a = \infty)}{1 + N_a}, \qquad (2.56)$$

также как и в случае нетеплопроводящих сред (2.12). В соответствии

с (2.56) временная зависимость возбуждаемых звуковых импульсов при импедансной границе также является взвешенной суммой этих зависимостей при закрепленной и свободной границах. Поэтому достаточно рассмотреть только эти два случая.

Таблица 2.1.

среда	ω _χ ,	c_L / χ ,	$ ho_0 c_L$,	$\beta^*\sqrt{\chi}$,	$ ho_0 c_p \sqrt{\chi}$,	$\beta^* / \rho_0 c_p$,
	$10^{11} c^{-1}$	10 ⁶ с м ⁻¹	10^5 кг / м 2 с	10 ⁻⁵ ●	Дж/ с м ² с ^{1/2}	с м ³ / МДж
				с м/Кс ^{1/2}		
алюми-	4.5	0.72	17	4.4	2.3	19
ний						
ртуть	1.3	0.91	20	7.2	0.75	96
кварц	620	110	12	0.005	0.1	0.47
вода	150	100	1.5	0.54	0.16	43
этанол	160	130	0.92	3.2	0.058	560
воздух	0.06	0.17	4.3•10 ⁻³	150	5.8•10 ⁻⁴	$2.6 \bullet 10^{6}$

Рассмотрим случай $m_\chi \sim 1$. Тогда теплопроводность существенна во всем рабочем диапазоне частот ω<ω_χ. При закрепленной границе передаточная функция

$$K(N_{a} = 0) = \frac{\beta_{2}^{*}}{\rho_{2}c_{p2}} \frac{1+b}{1+R_{T}}$$
(2.57)

не зависит от частоты. На временном языке это означает, что акустический сигнал повторяет форму импульса греющего

излучения. Второе слагаемое в числителе (2.57) определяет вклад теплового расширения прозрачной среды в сигнал. Как видно из таблицы 2.1, оно может существенно увеличивать эффективность преобразования. При свободной границе передаточная функция

$$K(N_{a} = \infty) = \frac{\beta_{2}^{*}}{\rho_{2}c_{p2}} \left(-i\frac{\omega}{\omega_{\chi}}\right)^{1/2} (1+R_{T})^{-1}$$
(2.58)

имеет универсальный вид и соответствует решению задачи Даниловской о поверхностном нагреве. Тепловое расширение прозрачной среды, как видно, не влияет на сигнал. Эффективность возбуждения звука при свободной границе во всем диапазоне частот ω<<ω_γ много меньше, чем при закрепленной.

В случае импедансной границы эффективности монопольных $(K(N_a=0))$ и дипольных $(K(N_a=\infty))$ источников сравниваются на частоте $\omega = \omega_{\chi} (1+b)^2 / N_a^2$. Влияние последних актуально лишь при $N_a >> 1$. Поэтому для повышения эффективности возбуждения необходимо уменьшать отношение импедансов N_a . Зависимость модуля |K| от частоты для нескольких N_a и от N_a на нескольких частотах приведены на рис.2.9.

Рис.2.9. Передаточные функции в случае поверхностного поглощения света при различных соотношениях импедансов поглощающей и прозрачной среды для следующих значений N: 1 - ∞; 2 - 3; 3 -1; 4 - 0.3; 5 - 0.

Форма акустических сигналов, возбуждаемых при жесткой и свободной границах для гауссовой зависимости

$$f(t) = \frac{1}{\sqrt{\pi}} exp\left(-\left(\frac{t}{\tau_L}\right)^2\right)$$

интенсивности излучения от времени приведены на рис.2.10. Как видно их длительность того же порядка, что и время нагрева. При свободной границе импульс разрежения имеет универсальный закон спадания ~ $\tau^{-1/2}$, который определяется диффузией тепла. При импедансной границе форма акустической волны есть взвешенная сумма приведенных выше форм.

Рис.2.10. Форма оптоакустических импульсов, возбуждаемых при поверхностном поглощении света: 1 - жесткая граница, 2 - свободная граница (увеличено в $\sqrt{\omega_{\chi} \, \tau_L}$ раз).

В случае слабо теплопроводящих сред $m_{\chi} << 1$ передаточные функции уже не имеют универсального вида и зависят от отношения акустических импедансов N_a . В области низких частот $\omega << \omega_T$ передаточные функции определяются диффузией тепла и совпадают с (2.57), (2.58). В прозрачной среде эффективность возбуждения звука не зависит от частоты

$$K_{1}(\omega) = \frac{\beta_{2}^{*}}{\rho_{2}c_{p2}} \frac{N_{a}}{N_{a}+1} \frac{1+b}{1+R_{T}}$$

и растет с увеличением N_a (колебательная скорость поверхности растет с уменьшением импеданса прозрачной среды). Относительный вклад теплового расширения сред определяется величиной *b* и в

случае газообразной прозрачной среды тепловое расширение поглощающей среды практически не существенно.

В спектральном диапазоне $\omega_T << \omega_a << \omega_\chi$ (что реализуется при $m_\chi <<1$) теплопроводность не влияет на эффективность возбуждения звука:

$$K_{2}(\omega) = \frac{\beta_{2}^{*}}{\rho_{2}c_{p2}} \frac{1}{N_{a}+1} \frac{1-iN_{a}\omega/\omega_{a}}{1+(\omega/\omega_{a})^{2}},$$
$$K_{1}(\omega) = \frac{\beta_{2}^{*}}{\rho_{2}c_{p2}} \frac{N_{a}}{N_{a}+1} \frac{1}{1-i(\omega/\omega_{a})}.$$

Эти передаточные функции совпадают с полученными ранее для жидкостей без учета теплопроводности. Как видно, в этом случае тепловое расширение прозрачной среды не влияет на возбуждение акустических волн. Оно может быть существенно лишь при $b > (m_{\chi})^{-1/2}$.

Таким образом метод передаточных функций позволяет описать возбуждение акустических волн тепловыми с учетом теплообмена на границе в одномерном случае.